Migrating_MySQL_Postgres
Alternative Solutions for MySQL to PostgreSQL Migration: Updated to show Alternative Approach to Migrate MySQL to Postgres
What Azure DMS Actually Supports:
MySQL β Azure Database for MySQL
PostgreSQL β Azure Database for PostgreSQL
SQL Server β Azure SQL Database/MI
MongoDB β Azure Cosmos DB
What it DOESNβT Support:
MySQL β PostgreSQL β
Oracle β PostgreSQL β
Any cross-engine migrations β
Alternative Solutions for MySQL to PostgreSQL Migration
Since Azure DMS wonβt work for your use case, here are the best alternatives for zero-downtime migration:
1. AWS Database Migration Service (DMS) For a comprehensive zero-downtime migration using AWS DMS, see our detailed guide.
AWS DMS actually DOES support MySQL to PostgreSQL migrations with continuous replication:
# AWS DMS supports this migration path
Source: MySQL (on Azure) β Target: PostgreSQL (on Azure)Use AWS DMS even when both databases are on Azure - itβs just a migration tool.
2. Third-Party Tools
pgloader - Excellent for MySQL to PostgreSQL:
# One-time migration
pgloader mysql://user:pass@mysql-host/db postgresql://user:pass@pg-host/db
# With transformation rules
pgloader --verbose --debug mysql://source postgresql://targetDebezium + Kafka for real-time replication:
# Debezium MySQL Source Connector
{
"connector.class": "io.debezium.connector.mysql.MySqlConnector",
"database.hostname": "your-mysql-host",
"transforms": "unwrap",
"transforms.unwrap.type": "io.debezium.transforms.ExtractNewRecordState"
}3. Manual Logical Replication Setup
Phase 1: Schema Migration
# Export MySQL schema and convert to PostgreSQL
mysqldump --no-data --routines --triggers source_db > mysql_schema.sql
# Use conversion tools or manual conversionPhase 2: Initial Data Load
# Use pgloader or custom ETL
pgloader --with "prefetch rows = 10000" \
--with "batch size = 25MB" \
mysql://source postgresql://targetPhase 3: Change Data Capture
Set up binlog reading from MySQL
Stream changes to PostgreSQL via custom application
Use tools like Maxwellβs daemon or Debezium
4. Application-Level Dual Write
During migration period:
def write_data(data):
# Write to both databases during transition
mysql_connection.execute(mysql_query, data)
postgresql_connection.execute(pg_query, converted_data)
# Validate consistency
if validate_enabled:
validate_data_consistency(data)Recommended Approach for Zero Downtime
Option 1: AWS DMS (Easiest)
Set up AWS DMS instance
Configure MySQL (Azure) as source
Configure PostgreSQL (Azure) as target
Run continuous replication
Perform cutover when synchronized
Option 2: Debezium + Custom Pipeline
Deploy Kafka cluster
Set up Debezium MySQL connector
Create transformation logic for MySQLβPostgreSQL data types
Stream to PostgreSQL via Kafka Connect PostgreSQL sink
Monitor lag and perform cutover
Would you like me to provide detailed implementation steps for either of these approaches? AWS DMS would be the quickest solution since it handles the cross-engine conversion automatically.
UDATE: Migrating from MySQL to PostgreSQL (not supported)?
On Azure without downtime requires a carefully planned approach using logical replication and synchronized cutover strategies:
Azure Database Migration Service (DMS) Approach
Azure DMS is the recommended tool for this migration as it supports online (minimal downtime) migrations:
Setup Azure DMS
Create an Azure Database Migration Service instance
Configure network connectivity between source MySQL and target PostgreSQL
Ensure proper firewall rules and VNet peering if needed
Configure Continuous Sync
Enable binary logging on MySQL source
Create migration project in DMS with βOnline migrationβ selected
DMS will perform initial data load and then continuously sync changes
Alternative Logical Replication Strategy
If Azure DMS doesnβt meet your needs, use a custom logical replication approach:
Phase 1: Initial Setup
-- On MySQL source
SET GLOBAL binlog_format = 'ROW';
SET GLOBAL binlog_row_image = 'FULL';
-- Create replication user
CREATE USER 'repl_user'@'%' IDENTIFIED BY 'secure_password';
GRANT REPLICATION SLAVE ON *.* TO 'repl_user'@'%';Phase 2: Schema Migration
Use tools like
pgloaderor custom scripts to convert schemaHandle data type differences (MySQL β PostgreSQL)
Migrate indexes, constraints, and triggers separately
Phase 3: Data Synchronization Tools
AWS DMS (works with Azure): Can replicate from MySQL to PostgreSQL
Debezium + Kafka: Stream changes from MySQL binlog to PostgreSQL
Custom ETL pipeline: Using tools like Apache Airflow
Step-by-Step Migration Process
1. Pre-Migration Preparation
# Schema assessment and conversion
mysqldump --no-data --routines --triggers source_db > schema.sql
# Convert MySQL schema to PostgreSQL format2. Setup Target PostgreSQL
Create Azure Database for PostgreSQL
Configure performance tier matching source workload
Setup monitoring and backup policies
3. Initial Data Load
# Using pgloader for initial migration
pgloader mysql://user:pass@mysql-host/db postgresql://user:pass@pg-host/db4. Continuous Replication Setup
Use Debezium for change data capture:
# Debezium connector configuration
{
"name": "mysql-postgres-connector",
"config": {
"connector.class": "io.debezium.connector.mysql.MySqlConnector",
"database.hostname": "mysql-host",
"database.port": "3306",
"database.user": "repl_user",
"database.password": "password",
"database.server.id": "12345",
"database.server.name": "mysql-server",
"database.include.list": "your_database",
"transforms": "route",
"transforms.route.type": "org.apache.kafka.connect.transforms.RegexRouter",
"transforms.route.regex": "([^.]+)\\.([^.]+)\\.([^.]+)",
"transforms.route.replacement": "$3"
}
}Application Migration Strategy
1. Dual-Write Pattern
Modify application to write to both MySQL and PostgreSQL
Read from MySQL initially
Validate data consistency between databases
2. Feature Flags
# Application code example
if feature_flag_enabled('use_postgresql'):
result = postgresql_query(sql)
else:
result = mysql_query(sql)3. Database Abstraction Layer
Use ORM or database abstraction layer
Switch database connections via configuration
Handle SQL dialect differences
Testing and Validation
1. Data Validation
-- Compare row counts
SELECT COUNT(*) FROM mysql_table;
SELECT COUNT(*) FROM postgresql_table;
-- Checksum validation
SELECT MD5(CONCAT_WS('|', col1, col2, col3)) FROM mysql_table ORDER BY id;
SELECT MD5(string_agg(col1||'|'||col2||'|'||col3, '' ORDER BY id)) FROM postgresql_table;2. Performance Testing
Run load tests against PostgreSQL
Compare query performance
Validate connection pooling and caching
Cutover Process
1. Synchronized Cutover
# 1. Stop application writes
# 2. Wait for replication lag to reach zero
# 3. Perform final data validation
# 4. Switch application configuration
# 5. Start application with PostgreSQL2. Rollback Plan
Keep MySQL running for 24-48 hours
Monitor application metrics
Have immediate rollback procedure ready
Azure-Specific Considerations
1. Network Configuration
Use Azure Private Link for secure connectivity
Configure VNet integration for DMS
Setup NSG rules for database access
2. Monitoring and Alerting
# Azure CLI monitoring setup
az monitor metrics alert create \
--name "PostgreSQL-CPU-Alert" \
--resource-group myResourceGroup \
--scopes "/subscriptions/.../resourceGroups/.../providers/Microsoft.DBforPostgreSQL/servers/myserver" \
--condition "avg Percentage CPU > 80"3. Backup Strategy
Configure automated backups for PostgreSQL
Test point-in-time recovery
Document backup retention policies
Common Challenges and Solutions
1. Data Type Mapping
-- MySQL to PostgreSQL mappings
TINYINT(1) β BOOLEAN
DATETIME β TIMESTAMP
ENUM β VARCHAR with CHECK constraint
AUTO_INCREMENT β SERIAL or IDENTITY2. SQL Dialect Differences
Replace MySQL-specific functions
Handle LIMIT/OFFSET differences
Update stored procedures and triggers
3. Character Set Issues
Ensure UTF-8 encoding consistency
Handle collation differences
Test special characters thoroughly
This approach minimizes downtime to minutes during the final cutover while ensuring data consistency and providing rollback capabilities. The key is thorough testing and having multiple validation checkpoints throughout the process.ββββββββββββββββ
Last updated